Sliding grafted polymer layers

[button href="" color="lime_green" target="_blank" id=""]PDF[/button]
[button href="" color="sea_foam" target="_blank" id=""]arXiv[/button]

V.A. Baulin, A. Johner, C.M. Marques

Macromolecules, 38(4), 1434 – 1441 (2005)

We study theoretically the structure of sliding grafted polymer layers, or SGP layers. These interfacial structures are built by attaching each polymer to the substrate with a ringlike molecule such as cyclodextrins. Such a topological grafting mode allows the chains to freely slide along the attachment point. Escape from the sliding link is prevented by bulky capping groups. We show that grafts in the mushroom regime adopt mainly symmetric configurations (with comparable branch sizes), while grafts in dense layers are highly dissymmetric so that only one branch per graft participates in the layer. Sliding layers on small colloids or starlike sliding micelles exhibit an intermediate behavior, where the number of longer branches participating in the corona is independent of the total number of branches. This regime also exists for sliding surface micelles comprising less chains, but it is narrower.

name=”Vladimir Baulin”
] [people_short
name=”Carlos Marques”
Share This Post
Written by Vladimir Baulin
<p>Expertise is computer simulations and theory of soft matter systems. Research is focused on the topics in the theory of Soft matter, polymer physics.</p>
Have your say!

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

* Copy This Password *

* Type Or Paste Password Here *

3,314 Spam Comments Blocked so far by Spam Free Wordpress