Research

Nanoparticle-Induced Permeability of Lipid Membranes

Sergey Pogodin, Marco Werner, Jens-Uwe Sommer, Vladimir A. Baulin

ACS Nano, DOI: 10.1021/nn3028858 (2012)

Monte Carlo simulations using the bond fluctuation method with explicit solvent reveal the mechanism of enhanced permeability of lipid bilayers induced by the adsorption of nanoparticles with controlled hydrophobicity. Simulation results indicate an adsorption transition of nanoparticles on the bilayer in a […]

Read More

Biomolecule Surface Patterning May Enhance Membrane Association

S. Pogodin, N. K. H. Slater and V. A. Baulin

ACS Nano, 6(2), 1308-1313 (2012)

Under dehydration conditions, amphipathic late embryogenesis abundant proteins fold spontaneously from a random conformation into α-helical structures, and this transition is promoted by the presence of membranes. To gain insight into the thermodynamics of membrane association, we model the resulting α-helical structures […]

Read More

Equilibrium insertion of nanoscale objects into phospholipid bilayers

S. Pogodin and V.A. Baulin
Current Nanoscience, 7 (5), 721-726 (2011)

Certain membrane proteins, peptides, nanoparticles and nanotubes have rigid structure and fixed shape. They are often viewed as spheres and cylinders with certain surface properties. Single Chain Mean Field theory is used to model the equilibrium insertion of nanoscale spheres and rods into the phospholipid bilayer. […]

Read More

Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer

S. Pogodin, N.K.H. Slater and V.A. Baulin
ACS Nano, 5 (2), 1141–1146 (2011)

Nanotube patterning may occur naturally upon the spontaneous self-assembly of biomolecules onto the surface of single-walled carbon nanotubes (SWNTs). It results in periodically alternating bands of surface properties, ranging from relatively hydrophilic to hydrophobic, along the axis of the nanotube. Single-chain mean field (SCMF) […]

Read More

Coarse-grained models of phospholipid membranes within the single chain mean field theory

S. Pogodin and V.A. Baulin
Soft Matter, 6, 2216 – 2226 (2010)
The single chain mean field theory is used to simulate the equilibrium structure of phospholipid membranes at the molecular level. Three levels of coarse-graining of DMPC phospholipid surfactants are present: the detailed 44-beads double tails model, the 10-beads double tails model and the minimal 3-beads […]

Read More