Research

General model of phospholipid bilayers in fluid phase within the single chain mean field theory

J. Chem. Phys. 140, 174903 (2014)
Yachong Guo, Sergey Pogodin and Vladimir A. Baulin

Coarse-grained model for saturated phospholipids: 1,2-didecanoyl-sn-glycero-3-phosphocholine (DCPC), 1,2-dilauroyl-sn-glycero-3-phosphocholine (DLPC), 1,2-dimyristoyl-sn-glycero-3-phosphocholine (DMPC), 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), 1,2-distearoyl-sn-glycero-3-phosphocholine (DSPC) and unsaturated phospholipids: 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC), 1,2- dioleoyl-sn-glycero-3-phosphocholine (DOPC) is introduced within the single chain mean field theory. A single set of parameters adjusted for DMPC bilayers gives an adequate description […]

Read More

Selective bactericidal activity of nanopatterned superhydrophobic cicada Psaltoda claripennis wing surfaces

Appl Microbiol Biotechnol., 97 (20), 9257-9262 (2013)
Jafar Hasan, Hayden K. Webb, Vi Khanh Truong, Sergey Pogodin, Vladimir A. Baulin, Gregory S. Watson, Jolanta A. Watson, Russell J. Crawford, Elena P. Ivanova
The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria on contact […]

Read More

Biophysical Model of Bacterial Cell Interactions with Nanopatterned Cicada Wing Surfaces

S. Pogodin, J. Hasan, V.A. Baulin, H.K. Webb, V.K. Truong, T.H.P. Nguyen, V. Boshkovikj, C.J. Fluke, G.S. Watson, J.A. Watson, R.J. Crawford and E.P. Ivanova

Biophys. J., 104 (4), 835-840 (2013)

The nanopattern on the surface of Clanger cicada (Psaltoda claripennis) wings represents the first example of a new class of biomaterials that can kill bacteria […]

Read More

Nanoparticle-Induced Permeability of Lipid Membranes

Sergey Pogodin, Marco Werner, Jens-Uwe Sommer, Vladimir A. Baulin

ACS Nano, DOI: 10.1021/nn3028858 (2012)

Monte Carlo simulations using the bond fluctuation method with explicit solvent reveal the mechanism of enhanced permeability of lipid bilayers induced by the adsorption of nanoparticles with controlled hydrophobicity. Simulation results indicate an adsorption transition of nanoparticles on the bilayer in a […]

Read More

Natural Bactericidal Surfaces: Mechanical Rupture of Pseudomonas aeruginosa Cells by Cicada Wings

Elena P. Ivanova, Jafar Hasan, Hayden K. Webb, Vi Khanh Truong, Gregory S. Watson, Jolanta A. Watson, Vladimir A. Baulin, Sergey Pogodin, James Y. Wang, Mark J. Tobin, Christian Löbbe, Russell J. Crawford

Small, 8 (16), 2489 – 2494 (2012)

Natural superhydrophobic surfaces are often thought to have antibiofouling potential due to their self-cleaning properties. However, when […]

Read More

Biomolecule Surface Patterning May Enhance Membrane Association

S. Pogodin, N. K. H. Slater and V. A. Baulin

ACS Nano, 6(2), 1308-1313 (2012)

Under dehydration conditions, amphipathic late embryogenesis abundant proteins fold spontaneously from a random conformation into α-helical structures, and this transition is promoted by the presence of membranes. To gain insight into the thermodynamics of membrane association, we model the resulting α-helical structures […]

Read More

Coupled concentration polarization and electroosmotic circulation near micro/nanointerfaces: Taylor–Aris model of hydrodynamic dispersion and limits of its applicability

A. Yaroshchuk, E. Zholkovskiy, S. Pogodin and V.A. Baulin
Langmuir, 27(18), 11710-11721 (2011)

Mismatches in electrokinetic properties between micro- and nanochannels give rise to superposition of electroosmotic and pressure-driven flows in the microchannels. Parabolic or similar flow profiles are known to cause the so-called hydrodynamic dispersion, which under certain conditions can be formally assimilated to an […]

Read More

Equilibrium insertion of nanoscale objects into phospholipid bilayers

S. Pogodin and V.A. Baulin
Current Nanoscience, 7 (5), 721-726 (2011)

Certain membrane proteins, peptides, nanoparticles and nanotubes have rigid structure and fixed shape. They are often viewed as spheres and cylinders with certain surface properties. Single Chain Mean Field theory is used to model the equilibrium insertion of nanoscale spheres and rods into the phospholipid bilayer. […]

Read More

Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer

S. Pogodin, N.K.H. Slater and V.A. Baulin
ACS Nano, 5 (2), 1141–1146 (2011)

Nanotube patterning may occur naturally upon the spontaneous self-assembly of biomolecules onto the surface of single-walled carbon nanotubes (SWNTs). It results in periodically alternating bands of surface properties, ranging from relatively hydrophilic to hydrophobic, along the axis of the nanotube. Single-chain mean field (SCMF) […]

Read More

Coarse-grained models of phospholipid membranes within the single chain mean field theory

S. Pogodin and V.A. Baulin
Soft Matter, 6, 2216 – 2226 (2010)
The single chain mean field theory is used to simulate the equilibrium structure of phospholipid membranes at the molecular level. Three levels of coarse-graining of DMPC phospholipid surfactants are present: the detailed 44-beads double tails model, the 10-beads double tails model and the minimal 3-beads […]

Read More

Can a carbon nanotube pierce through a phospholipid bilayer?

S. Pogodin and V.A. Baulin
ACS Nano, 4 (9), 5293–5300 (2010)
Great efficiency to penetrate into living cells is attributed to carbon nanotubes due to a number of direct and indirect observations of carbon nanotubes inside the cells. However, a direct evidence of physical translocation of nanotubes through phospholipid bilayers and the exact microscopic mechanism of their […]

Read More