Research

Homo-polymers with balanced hydrophobicity translocate through lipid bilayers and enhance local solvent permeability

Marco Werner, Jens-Uwe Sommer and Vladimir A. Baulin

Soft Matter, 8, 11708-11716 (2012)

Recent experimental studies indicate that polymeric structures with a well-adjusted balance of amphiphilic parts may translocate through self-assembled phospholipid bilayers and enhance the passive trans-membrane transport of smaller molecules. Using a coarse grained lattice Monte Carlo model with explicit solvent we investigate self-assembled lipid […]

Read More

Critical adsorption controls translocation of polymer chain through lipid bilayers and permeation of solvent

J.-U. Sommer, M. Werner and V. A. Baulin

Europhysics Letters, 98, 18003 (2012)

Monte Carlo simulations using an explicit solvent model indicate a new pathway for translocation of a polymer chain through a lipid bilayer. We consider a polymer chain composed of repeat units with a given hydrophobicity and a coarse-grained model of a lipid bilayer in […]

Read More

Translocation of nanoparticles, carbon nanotubes and polymers through bilayers

Cell membranes represent a serious protective barrier for external molecules, proteins, nanoparticles and drugs. This barrier is quite efficient in protecting the interior of the cells. However, large nanoscale objects, single-walled carbon nanotubes (SWNTs) have been found inside the cells both in direct and indirect biological experiments. Such experiments suggest that carbon nanotubes can efficiently […]

Read More