Research

Size- and coating-dependent uptake of polymer-coated gold nanoparticles in primary human dermal microvascular endothelial cells

Christian Freese, Matthew I. Gibso, Harm-Anton Klok, Ronald E. Unger, C. James Kirkpatrick

Biomacromolecules, 13 (5), pp 1533–1543 (2012)

A library-orientated approach is used to gain understanding of the interactions of well-defined nanoparticles with primary human endothelial cells, which are a key component of the vasculature. Fifteen sequentially modified gold nanoparticles (AuNPs) based on three different core […]

Read More

Interactions of silica nanoparticles with lung epithelial cells and the association to flotillins

Jennifer Kasper, Maria I. Hermanns, Christoph Bantz, Olga Koshkina, Thomas Lang, Michael Maskos, Christine Pohl, Ronald E. Unger, C. James Kirkpatrick

Arch. Toxicol., 6 (2012)

Amorphous silica nanoparticles (aSNPs) gain increasing popularity for industrial and therapeutic claims. The lung with its surface area of 100–140 m2 displays an ideal target for therapeutic approaches, but it represents also […]

Read More

Uptake and cytotoxicity of citrate-coated gold nanospheres: Comparative studies on human endothelial and epithelial cells

Christian Freese, Chiara Uboldi, Matthew I Gibson, Ronald E Unger, Babette B Weksler, Ignacio A Romero, Pierre-Olivier Couraud, C J Kirkpatrick

Part Fibre Toxicol., 9, 23 (2012)

BACKGROUND:
The use of gold nanoparticles (AuNPs) for diagnostic applications and for drug and gene-delivery is currently under intensive investigation. For such applications, biocompatibility and the absence of cytotoxicity of AuNPs […]

Read More

Natural Bactericidal Surfaces: Mechanical Rupture of Pseudomonas aeruginosa Cells by Cicada Wings

Elena P. Ivanova, Jafar Hasan, Hayden K. Webb, Vi Khanh Truong, Gregory S. Watson, Jolanta A. Watson, Vladimir A. Baulin, Sergey Pogodin, James Y. Wang, Mark J. Tobin, Christian Löbbe, Russell J. Crawford

Small, 8 (16), 2489 – 2494 (2012)

Natural superhydrophobic surfaces are often thought to have antibiofouling potential due to their self-cleaning properties. However, when […]

Read More

Translocation of nanoparticles, carbon nanotubes and polymers through bilayers

Cell membranes represent a serious protective barrier for external molecules, proteins, nanoparticles and drugs. This barrier is quite efficient in protecting the interior of the cells. However, large nanoscale objects, single-walled carbon nanotubes (SWNTs) have been found inside the cells both in direct and indirect biological experiments. Such experiments suggest that carbon nanotubes can efficiently […]

Read More

Surface patterning of carbon nanotubes can enhance their penetration through a phospholipid bilayer

S. Pogodin, N.K.H. Slater and V.A. Baulin
ACS Nano, 5 (2), 1141–1146 (2011)

Nanotube patterning may occur naturally upon the spontaneous self-assembly of biomolecules onto the surface of single-walled carbon nanotubes (SWNTs). It results in periodically alternating bands of surface properties, ranging from relatively hydrophilic to hydrophobic, along the axis of the nanotube. Single-chain mean field (SCMF) […]

Read More

Can a carbon nanotube pierce through a phospholipid bilayer?

S. Pogodin and V.A. Baulin
ACS Nano, 4 (9), 5293–5300 (2010)
Great efficiency to penetrate into living cells is attributed to carbon nanotubes due to a number of direct and indirect observations of carbon nanotubes inside the cells. However, a direct evidence of physical translocation of nanotubes through phospholipid bilayers and the exact microscopic mechanism of their […]

Read More

Collision induced spatial organization of microtubules

V.A. Baulin, C.M. Marques, F. Thalmann
Biophysical Chemistry, 128(2-3), 231 – 244 (2007)
The dynamic behavior of microtubules in solution can be strongly modified by interactions with walls or other structures. We examine here a microtubule growth model where the increase in size of the plus-end is perturbed by collisions with other microtubules. We show that […]

Read More