Critical adsorption controls translocation of polymer chain through lipid bilayers and permeation of solvent

[button href="" color="lime_green" target="_blank" id=""]PDF[/button]
[button href="" color="sea_foam" target="_blank" id=""]arXiv[/button]

J.-U. Sommer, M. Werner and V. A. Baulin

Europhysics Letters, 98, 18003 (2012)

Monte Carlo simulations using an explicit solvent model indicate a new pathway for translocation of a polymer chain through a lipid bilayer. We consider a polymer chain composed of repeat units with a given hydrophobicity and a coarse-grained model of a lipid bilayer in the self-organized liquid state. By varying the degree of hydrophobicity the chain undergoes an adsorption transition with respect to the lipid bilayer. Close to the transition point, at a properly balanced hydrophobicity of the chain, the membrane becomes transparent with respect to the chain. At the same time the solvent permeability of the bilayer is strongly increased in the region close to the adsorbed chain. Our results indicate that the critical point of adsorption of the polymer chain interacting with the fluctuating lipid bilayer could play a key role for the translocation of molecules through biological membranes.

name=”Jens-Uwe Sommer”
] [people_short
name=”Vladimir Baulin”
Share This Post
Written by Vladimir Baulin
<p>Expertise is computer simulations and theory of soft matter systems. Research is focused on the topics in the theory of Soft matter, polymer physics.</p>
Have your say!

Leave a Reply

Your email address will not be published. Required fields are marked *

You may use these HTML tags and attributes: <a href="" title=""> <abbr title=""> <acronym title=""> <b> <blockquote cite=""> <cite> <code> <del datetime=""> <em> <i> <q cite=""> <s> <strike> <strong>

* Copy This Password *

* Type Or Paste Password Here *

3,314 Spam Comments Blocked so far by Spam Free Wordpress