[button href="http://pubs.acs.org/doi/abs/10.1021/la400119e" color="lime_green" target="_blank" id=""]PDF[/button]
Marc Fuhrmans, Marcus Müller
Langmuir, 29 (13), pp 4335–4349 (2013)
Exposition of unilamellar vesicles to attractive surfaces is a frequently used way to create supported lipid bilayers. Although this approach is known to produce continuous supported bilayer coatings, the mechanism of their formation and its dependence on factors like surface interaction and roughness or membrane tension as well as the interplay between neighboring vesicles or the involvement of preadsorbed bilayer patches are not well understood. Using dissipative particle dynamics simulations, we assess different mechanisms of vesicle spreading on attractive surfaces, placing special emphasis on the orientation of the resulting bilayer. Making use of the universality of collective phenomena in lipid membranes, we employed a solvent-free coarse-grained model, enabling us to cover the relatively large system sizes and time scales required. Our results indicate that one can control the mechanism of vesicle spreading by tuning the strength and range of the interactions with the substrate as well as the surface’s roughness, resulting in a switch from a predominant inside-up to an outside-up orientation of the created supported bilayer.
name=”Marcus Muller”
photo=”https://softmat.net/wp-content/uploads/2012/10/marcus2small.jpg”
url=”https://softmat.net/muller/”
]